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Abstract

Fecal glucocorticoid metabolite analyses are increasingly being used by a variety of scientists (e.g., conservation biologists, ani-

mal scientists) to examine glucocorticoid (i.e., stress hormone) secretion in domestic and wild vertebrates. Adrenocortical activity

(i.e., stress response) is of interest to conservation biologists because stress can alter animal behavior, reduce resistance to disease,

and affect population performance. The noninvasiveness of fecal-based assessments is attractive, particularly when studying endan-

gered species, because samples can often be obtained without disturbing the animal. Despite such advantages, many confounding

factors inhibit the utility of this technique in addressing conservation problems. In particular, interpretation of fecal glucocorticoid

metabolite (FGM) measures may be confounded by the length of time animals are held in captivity, normal seasonal and daily

rhythms, body condition, sample storage and treatment techniques, diet of the animal, assay selection, animal status (i.e., social

ranking, reproductive status), sample age and condition, and sample mass. Further complicating interpretation and utility of these

measures is the apparent species-specific response to these factors. The purpose of this paper is to discuss the factors that confound

interpretation of FGM measures, summarize research that addresses these issues, and offer an agenda for future research and inter-

pretation. We urge conservation biologists to carefully consider confounding factors and the relationship between FGM secretion

and population performance and biological costs when investigating effects of environmental and human-induced disturbances on

wildlife. The crisis nature of many decisions in conservation biology often requires decisions from limited data; however, confirma-

tory results should not be posited when data are incomplete or confounding factors are not understood. Building reliable databases,

and research with surrogate species when possible, will aid future efforts and enhance the utility of FGM assays.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Because of potentially deleterious effects of chronic

stress, there is great interest among different fields of

study in measuring animal stress. Conservation biolo-

gists are often concerned with mitigating effects of envi-
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ronmental conditions and human-induced disturbances
on wildlife (e.g., Foley et al., 2001; Millspaugh et al.,

2001; Tempel and Gutiérrez, 2003). For animals in zoos,

effects of an animal�s surroundings, such as space and

food availability, and social conditions (e.g., Wieleb-

nowski et al., 2002) are often of interest. For domestic

species, animal scientists consider animal surroundings

(Barnett et al., 1991; Craig and Craig, 1985), effects

of painful events (Merl et al., 2000), and responses to
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transportation (Möstl et al., 2002; Palme et al., 2000)

and subsequent effects on meat quality (Ewing et al.,

1999). Thus, the effects of stress have important conser-

vation and economic implications.

A major challenge is quantifying �stress� in animals.

In addition to behavioral measures (Rushen, 2000),
endocrine and immunological techniques have been

used to measure stress responses. Commonly, glucocor-

ticoid (i.e., cortisol and corticosterone) secretion is used

as a hormonal measure of stress (Wasser et al., 2000;

Wingfield et al., 1994). In the past, glucocorticoids have

typically been quantified in blood (e.g., Gregory and

Schmid, 2001; Harlow et al., 1990; Hood et al., 1998;

Mathies et al., 2001; Widmaier et al., 1994; Wingfield
et al., 1994). Blood-based assays (serum or plasma) mea-

sure the level of glucocorticoids available to trigger bio-

logical responses in the animal (Washburn et al., 2002;

Wingfield et al., 1994). However, use of blood measures

is restrictive for many species because animals typically

must first be captured, thus potentially compromising an

accurate assessment of stress (Cook et al., 2000; Hamil-

ton and Weeks, 1985; Le Maho et al., 1992). Recent
developments, such as remote blood sampling systems

are helpful (Cook et al., 2000), but are not feasible in

most field studies involving free-ranging animals. In

addition, the point sample provided by a blood measure

might not be representative of long-term hormone levels

due to the pulsatile secretion pattern of glucocorticoids

in blood (Harper and Austad, 2000; Monfort et al.,

1993; Windle et al., 1998). On the other hand, blood
measures offer the advantage of evaluating adrenal

responsiveness to a capture and restraint protocol

(Wingfield et al., 1994), which aids in understanding

the animal�s adrenocortical status.
In contrast to blood measures, noninvasive methods

to quantify stress are being developed and applied in

vertebrate studies which offer several advantages over

traditional invasive methods. Fecal hormone metabolite
assays are now being used in a variety of disciplines

(e.g., animal science, behavioral ecology, conservation

biology, ornithology, and primatology) to examine the

reproductive and adrenocortical status of a variety of

taxa (Berkeley et al., 1997; Dehnhard et al., 2001,

2003; Ganswindt et al., 2003; Good et al., 2003; Goy-

mann et al., 1999, 2002; Graham and Brown, 1996; Har-

per and Austad, 2000; Hayssen et al., 2002; Hunt et al.,
2004; Jurke et al., 1997; Kirkpatrick et al., 1996; Miller

et al., 1991; Morrow et al., 2002; Palme and Möstl, 1997;

Touma et al., 2003, 2004; Turner et al., 2003; Wasser

et al., 1997, 2000). These noninvasive methods are par-

ticularly useful because samples can be easily obtained

without disturbing the study animals and do not put

the animal in danger during capture (Millspaugh et al.,

2002; Möstl and Palme, 2002; Wasser et al., 2000). Fur-
thermore, samples can be collected at regular intervals

through time. Because they do not disturb the animal,
noninvasive techniques may provide an accurate assess-

ment of stress without the bias of capture-induced in-

creases in glucocorticoids (Harper and Austad, 2000;

Millspaugh et al., 2001; Touma et al., 2003). Further-

more, fecal glucocorticoid metabolite (FGM) assays re-

flect an average level of circulating glucocorticoids over
a time period, rather than a point sample, and therefore

may provide a more accurate assessment of long-term

glucocorticoid levels (Harper and Austad, 2000).

Although use of noninvasive techniques has increased

for many species, several confounding factors inhibit

their utility. Thus, interpretation of studies remains

problematic. For example, FGM measures may be af-

fected by sampling issues and assay artifacts such as
sample age (Washburn and Millspaugh, 2002), time of

day the sample was obtained (Touma et al., 2003), and

short- and long-term storage techniques (Khan et al.,

2002; Lynch et al., 2003; Millspaugh et al., 2003; Terio

et al., 2002). A host of biological issues including length

of time in captivity (Marra et al., 1995), normal daily

(Breuner et al., 1999; Romero and Remage-Healey,

2000) and normal seasonal changes in glucocorticoid
excretion (Dawson and Howe, 1983; Raminelli et al.,

2001; Wingfield, 1994), reproductive status (Whittier

et al., 1997; Wingfield et al., 1994), sex (Touma et al.,

2003), body condition (Heath and Dufty, 1998; Smith

et al., 1994), and the animal�s diet might also confuse

interpretation of FGM measures. The lack of available

seasonal basal FGM values also has been inhibitive.

That is, without knowledge of �normal� values, it be-
comes difficult to assess whether FGM levels are ele-

vated. More troubling is our inability to relate FGM

measures to population performance (i.e., what range

of glucocorticoid levels for what period of time indicates

significant biological costs; �distress�)?
Data on �normal� patterns of FGM excretion, an

evaluation of potential confounding factors in regard

to their affect on measured FGM levels, and an under-
standing of FGM levels in relation to response variables

of interest (e.g., population performance) is essential for

conservation biology. Without this information, the

influence of natural or human-induced effects on wildlife

populations becomes difficult to assess. Although some

recent work has addressed these issues (e.g., Harper

and Austad, 2001; Khan et al., 2002; Lynch et al.,

2003; Millspaugh and Washburn, 2003; Touma et al.,
2003; Washburn and Millspaugh, 2002), additional re-

search is needed to understand their effects on FGM

measurements over a broader range of conditions and

species. In addition, the apparent species-specific re-

sponse to these factors limits generalizing and applying

results from one study to another.

We discuss confounding factors when using FGM as-

says to assess the adrenocortical status of free-ranging,
wild animals and offer suggestions for future research.

Data available on biological issues in FGM evaluation
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including effects of sex, age, reproductive status, daily

and seasonal rhythms, effects of captivity, diet, and

excretion route are summarized. Our paper is written

in the context of addressing conservation problems, par-

ticularly with free-ranging species of conservation con-

cern. However, many of our recommendations apply
equally well to domestic and wildlife held in captivity.
2. Issues with application and interpretation

There are a number of sampling issues, assay arti-

facts, and biological conditions that complicate interpre-

tation and application of FGM assay results. Here, we
review the literature and offer guidance about these

issues.

2.1. Sampling and assay artifacts

2.1.1. Effects of sample age and condition

Ideally, feces collected for FGM analysis would be of

known age, from a known individual; however, this is
often difficult in field studies. The most attractive sam-

pling option for many elusive species involves the collec-

tion of fecal samples that are potentially several days

old. Collecting non-fresh samples assumes that feces still

contain biologically representative amounts of FGMs.

However, samples that have been exposed to precipita-

tion or excessive temperatures might not provide an

accurate assessment of FGM levels.
Under controlled conditions, Washburn and Millsp-

augh (2002) found that white-tailed deer (Odocoileus

virginianus) feces exposed to simulated rainfall events

had artificially elevated FGM measurements. These dif-

ferences were evident in samples exposed to rainfall for

only a few days (Washburn and Millspaugh, 2002). They

observed no temperature-related effects on FGM mea-

surements. Washburn and Millspaugh (2002) suspected
microbes in the feces may have metabolized the fecal

glucocorticoids into metabolites with an increased rela-

tive affinity for the ICN corticosterone double-antibody

radioimmunoassay kit (07-120102; MP Biomedicals,

Costa Mesa, CA) used in their study. The ICN antibody

they used is believed to act as a group specific antibody

with cross-reactivity to numerous FGMs of both corti-

sol and corticosterone (Wasser et al., 2000). The addi-
tional moisture provided by the rainfall at room

temperature may have provided a growth environment

for microbes and detritivores, as evidenced by the pres-

ence of fungi observed on several fecal samples exposed

to the simulated rainfall treatment (Washburn and

Millspaugh, 2002). Also, other biochemical processes,

such as cleavage of conjugate side groups from gluco-

corticoid metabolites by non-microbial action or release
of FGMs from lipid micelles, may also have increased

FGM measurements (Washburn and Millspaugh,
2002). Terio et al. (2002) found that glucocorticoid

metabolites in cheetah (Acinonyx jubatus) feces de-

creased in response to sample drying with a solar oven

and a conventional oven. Terio et al. (2002) reported

these differences could be related to biochemical changes

in immunoreactivity, degradation of steroids (Matkov-
ics, 1972), or bacterial metabolism (Woods, 1975).

These results have important implications for field

studies. First, these findings indicate the possibility of

erroneous FGM measures from feces that are not col-

lected fresh. Therefore, ideally one would collect only

fresh samples (i.e., those less than a couple hours old),

which is extremely difficult to know in field studies

involving plot-based collection techniques. Because
FGMs can change in short periods of time (Möstl

et al., 1999; Washburn and Millspaugh, 2002), this sug-

gestion must be taken seriously. Furthermore, samples

collected blindly from plots could be from different ani-

mals of different ages, sex, reproductive conditions,

body conditions, and hydration states, which could

introduce unknown bias in any study using this design.

When a researcher is unable to collect fresh samples,
they must understand and acknowledge the effects of

sample age and condition on FGM concentrations.

We recommend future studies be conducted with fecal

samples exposed to actual climatic conditions in field sit-

uations, involve other wildlife species, and be extended

longer than 7 days.

2.1.2. Sample storage and transportation

Fecal samples used for FGM analysis are sometimes

stored in preservatives, such as ethanol, prior to freez-

ing; in some cases, shipping regulations require treat-

ment. For example, if fecal material is shipped into the

US, the US Department of Agriculture requires that

feces be treated with heat or chemicals to kill potential

pathogens (e.g., virus particles) to prevent disease trans-

mission (Millspaugh et al., 2003). Approved treatments
consist of autoclaving or immersing fecal material in

10% formalin, 2% acetic acid, 90% ethanol, or 2% so-

dium hydroxide. However, these treatments could influ-

ence the structure and immunoreactivity of FGMs, thus

preventing accurate measurement of FGM levels.

Millspaugh et al. (2003) evaluated whether these heat

and chemical treatments influenced FGM concentra-

tions in white-tailed deer and elk (Cervus elaphus) feces.
They found that FGM measurements were consistently

altered by autoclaving, often increasing FGM concen-

trations by >20%. They suspected increased microbial

activity during the heating process or increased chemical

reactions in the feces might have altered FGM levels

(Aldercreutz et al., 1976; Bokkenheuser and Winter,

1980). Similarly, increased FGM concentrations in

untreated, shipped deer feces were observed, which
was attributed to sample thawing and warming, and

subsequent microbial effects (Millspaugh et al., 2003).
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Formalin decreased FGM concentrations in deer and

elk feces; sodium hydroxide reduced FGM concentra-

tions in elk feces only. Immersing deer and elk samples

in a 2% acetic acid treatment had the least impact on

FGM measures; on average these samples were <2% dif-

ferent from the control for deer and <6% for elk. In a
similar study, Terio et al. (2002) evaluated the effects

of heat and chemicals on FGM levels in cheetah feces.

They reported that ethanol was the best chemical treat-

ment of those evaluated. Even untreated and frozen

samples might have altered FGM levels. When frozen

for a short-time (2 weeks), Lynch et al. (2003) observed

a slight but significant decline to FGM in baboon (Papio

cynocephalus) fecal samples; storage in a charcoal refrig-
erator increased FGM. Similarly, for baboon feces,

Khan et al. (2002) observed differences in FGM levels

from samples stored in ethanol at �20 and 25 �C, ini-
tially declining, then increasing at about 120 days; final

FGM values at 180 days were similar to initial values

(Khan et al., 2002).

These findings demonstrate that handling and storage

of fecal samples might influence FGM measures; re-
sponses also could be species-specific. To slow microbial

activity and reduce problems with immunoreactivity, we

recommend freezing samples as soon as possible without

any chemical treatment. When possible, use of liquid

nitrogen and dry ice is advised because FGM can

change in a very short time period (Möstl et al., 1999).

If chemical treatment is required, a thorough under-

standing of their effects on FGM is necessary. If other
hormone metabolites (e.g., fecal estrogens) are also

being quantified from the fecal material, researchers

should evaluate these effects for each hormone being

measured because their response to chemicals might be

different (Khan et al., 2002). Even in samples not treated

with chemicals, the best approach to avoid alteration of

FGM is prompt lyophilization and extraction to avoid

effects due to freezing alone (Lynch et al., 2003). Careful
consideration should be taken to understand length of

storage in relation to FGM levels (e.g., Khan et al.,

2002) because comparison of samples stored for differ-

ent time periods might not be appropriate due to storage

effects on FGM levels. More research should consider

different species, shorter and longer storage in chemi-

cals, and whether samples remain frozen or not.

2.1.3. Variability in FGM measures

Two additional sources of variability in FGM studies

relate to the representativeness of the sub-sample se-

lected for extraction and analysis (i.e., variability of mul-

tiple FGM estimates from the same individual fecal

mass) and to the precision of the assay procedure itself.

The first error might exist when FGMs are not evenly

distributed throughout the entire fecal mass. An esti-
mate of FGMs from a fecal sample is typically obtained

by analyzing only one small aliquot (e.g., �0.2g of dried
feces) of the total fecal mass (Millspaugh et al., 2002;

Wasser et al., 2000). Thus, the validity of FGM esti-

mates depend upon the representativeness of that small

aliquot used. For small species sampled via live-trapping

or mist-netting it is feasible to collect and assay all fecal

material deposited in a set amount of time. Estimates of
variability are important because if variability is high,

additional samples might be required to achieve a de-

sired level of statistical power (Millspaugh and Wash-

burn, 2003), should hypothesis testing be of interest.

Data on other fecal steroids suggest that FGMs could

be different among portions of the fecal mass. For exam-

ple, Brown et al. (1994) reported that fecal estrogens and

progestins were unevenly distributed within feces of
cheetahs, clouded leopards (Neofelis nebulosa), and

snow leopards (Panthera uncia). Wasser et al. (1996)

examined the distribution of radiolabeled estrogen and

progesterone metabolites in African elephant feces and

found concentrations were higher on the outside of the

sample compared to the inside. Consequently, Wasser

et al. (1996) recommended using well-mixed, dried fecal

powder from premixed wet samples, which is the stan-
dard for FGM assays (e.g., Millspaugh et al., 2002;

Wasser et al., 2000).

In a study designed to investigate variability in

FGMs, Millspaugh and Washburn (2003) observed

higher FGM measures from pellet groups than from

thoroughly mixed fecal samples. Thus, using a few pel-

lets from a fecal mass versus mixing that mass and

sub-sampling, could lead to biased results. Additionally,
FGM measures from thoroughly mixed fecal samples

were less variable, although the result was not statisti-

cally significant. Despite the non-significance, a power

analysis indicated the need to sample more intensively

if thoroughly mixed fecal samples are not used during

the extraction process. They also noted process error

(i.e., repeatability of measurements) of 6–10% on aver-

age, but some samples, particularly those from pellet
groups were much higher (i.e., 30% difference). Such

variability should be considered in light of measurable

variance introduced by the disturbance effects of inter-

est. We recommend researchers thoroughly mix the fecal

mass in the field prior to sub-sampling fecal material for

later laboratory analysis (Wasser et al., 1996).

2.1.4. Sample mass

In some situations, particularly those involving small

animals (e.g., songbirds), the entire individual fecal mass

may constitute the sample (Tempel and Gutiérrez, 2004;

Washburn et al., 2003). Recent work from our labora-

tory suggests that very small fecal samples (e.g.,

<0.02g) may result in proportionately higher FGM con-

centrations and thus might bias study findings (Fig. 1).

Tempel and Gutiérrez (2004) found a similar relation-
ship between small fecal samples and FGM concentra-

tions in California spotted owl feces. The reason for



Fig. 1. The relationship between sample mass (g) and fecal glucocor-

ticoid metabolite (ng/g) values from mourning dove (Zenaida macro-

ura) feces. Feces were collected (within 1h of defecation) from wild-

caught birds held in captivity for a diversity of ecological studies.
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this bias is unknown, but several possibilities exist. For

one, the higher concentration of methanol per unit of

sample mass might result in greater extraction of

FGM from the dried feces during the extraction process.

We believe future research needs to be conducted to pro-
vide guidance into the appropriateness of using fecal

samples of very small mass. However, given the afore-

mentioned findings in our laboratory, we suggest that

researchers avoid analyzing fecal samples of very small

mass (<0.02g dried mass) or, if appropriate, combine

all fecal samples from a certain time period to provide

a larger fecal sample representative of that time period

(e.g., Suedkamp Wells et al., 2003).

2.1.5. Antibody/assay selection and comparison

Few studies have directly compared the effectiveness

of two or more immunoassays for individual species,

although some studies do exist (Goymann et al., 1999;

Morrow et al., 2002; Wasser et al., 2000). Because each

assay utilizes a different antibody with varying affinity

for FGMs and differing methods for sample preparation
may be used, it is not appropriate to compare absolute

FGM values from two different studies if two different

assays were used. In fact, unless standardized field sam-

pling (e.g., storage in chemicals, age of sample) and lab

techniques are used (e.g., method of extraction), direct

comparisons of absolute FGM measures among studies

should be conducted with caution. However, biologi-

cally important trends in FGM levels should be noted
by both assays and allow for a comparison of trends.

The proportion and composition of circulating gluco-

corticoids in the bloodstream varies among species. For

example, corticosterone is the primary glucocorticoid

in birds and small mammals, whereas cortisol is the pre-

dominant glucocorticoid in medium to large mammals,

fish, and humans (Hadley, 1996). There are some impor-

tant exceptions concerning the primary glucocorticoid in
certain groups of animals, which influences immunoas-
say selection. For example, cortisol is the primary gluco-

corticoid in guinea pigs. Consequently, a spectrum of

FGMs exists among species due to the variation in blood

glucocorticoids, liver metabolic pathways, and gut

microbial communities. Due to the spectrum of FGMs

and species-specific responses to environmental condi-
tions and anthropogenic influences, direct comparisons

among species are not appropriate (Romero, 2004).

2.2. Biological issues

There are a number of biologically relevant issues

that complicate interpretation of FGM research results.

Here, we consider several biological issues such as effects
of sex, age, and reproductive status, daily patterns and

seasonal patterns in glucocorticoids, effects of captivity,

dietary effects, excretion routes of glucocorticoid metab-

olites, and species-specific responses in stress responses.

2.2.1. Sex, age, and reproductive status

The sex, age, and reproductive status of an animal

might influence its adrenocortical activity, with subse-
quent effects to FGM assessment. Romero and Re-

mage-Healey (2000) found that male and female

European starlings (Sturnus vulgaris) vary in their adre-

nocortical response to capture and handling during the

breeding season. The adrenocortical response of juvenile

Western screech owls (Otus kennicottii) to handling is

slightly different from adult birds (Dufty and Belthoff,

1997). Touma et al. (2003) found that male mice (Mus

musculus) excrete a higher proportion of radiolabeled

corticosterone metabolites in feces compared to females.

Reproductive status may also influence an animal�s
baseline FGM levels. For example, Kenagy and Place

(2000) found that circulating glucocorticoid levels were

significantly elevated in female yellow-pine chipmunks

(Tamias amoenus) that were lactating; this elevation is

likely reflected in FGM levels as well. In contrast, Huber
et al. (2003) found that reproductive stage did not influ-

ence FGM levels in captive red deer.

These findings suggest that sex, age, and reproductive

status can be expected to alter baseline FGM levels,

which might influence interpretation of an animal�s re-

sponse to various stressors. Consequently, the best sce-

nario would involve collection and analysis of samples

from individuals of known sex, age, and reproductive
status to ensure valid comparisons. Collection of sam-

ples from unknown individuals could bias results if dif-

ferences exist by sex, age, and reproductive status and

the researcher knows nothing about the animal from

which samples were collected. In situations where sex

of the animals that produced the fecal samples is un-

known, other noninvasive techniques, such as determi-

nation of reproductive steroid concentrations for sex
determination, might be helpful (Bercovitz et al., 1978;

Washburn et al., 2004).
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2.2.2. Daily rhythms and seasonal patterns in glucocor-

ticoid secretion

A distinct daily rhythm of basal levels of circulating

glucocorticoids has been reported for numerous wildlife

species, including pigeons (Columba livia; Joseph and

Meier, 1973), Western screech owls (Dufty and Belthoff,
1997), white-crowned sparrows (Zonotrichia leucophrys)

(Breuner et al., 1999), European starlings (Romero and

Remage-Healey, 2000), and common marmosets (Calli-

thrix jacchus) (Raminelli et al., 2001). Fecal glucocorti-

coid metabolites may follow a similar pattern because

changes in FGM levels result from changes in circulat-

ing glucocorticoid concentrations. For example, Touma

et al. (2003) reported that mice FGMs varied by time of
day. Similarly, Raminelli et al. (2001) noted diurnal var-

iation in fecal cortisol excretion in common marmosets

with lower levels in morning and higher levels in after-

noon. The detectability of diurnal changes in FGM

may be related to lag time of FGM excretion, which is

affected by gut passage time. That is, for small species

such as mice where FGMs are excreted more rapidly,

and defecation occurs at a more frequent rate, it is likely
one could detect daily differences in FGM. For species

with longer gut passive times (e.g., large ruminants) or

those that defecate infrequently (e.g., reptiles), it might

prove more difficult or impossible to detect daily differ-

ences. Researchers should incorporate knowledge of

daily rhythms of FGM when interpreting results of

FGM assays and might attempt to collect samples at

the same time of day to avoid complications should
diurnal differences be evident (Whitten et al., 1998).

Comparison of FGM from fecal material collected at

different times of the day will be valid only if FGMs

do not reflect diurnal differences.

Recent research indicates that glucocorticoid levels in

birds, mammals, reptiles, and amphibians are seasonally

modulated (Harper and Austad, 2001; Kenagy and

Place, 2000; Millspaugh et al., 2001; Moore et al.,
2001; Romero, 2002). That is, the magnitude of both ba-

sal and elevated glucocorticoid levels might vary in a

predictable pattern during the annual cycle. For exam-

ple, studies of white-crowned sparrows have shown that

baseline plasma corticosterone levels are lowest during

the winter and periods of molting and highest during

periods of active breeding (Astheimer et al., 1992; Ro-

mero et al., 1997; Romero and Wingfield, 1998d). Simi-
larly, seasonal variation in plasma corticosterone

(Romero, 2002; Romero and Remage-Healey, 2000; Ro-

mero et al., 1998a,b,c; Wingfield et al., 1994) and FGMs

(Washburn et al., 2003) have been reported for other

avian species. Seasonal patterns of glucocorticoids

(Kenagy and Place, 2000; Romero, 2002) and FGMs

(Harper and Austad, 2001; Millspaugh et al., 2001,

2002) are evident for various mammals.
Researchers should incorporate knowledge of sea-

sonal patterns of glucocorticoid metabolites when inter-
preting the results of FGM assays. Unfortunately, such

data are unavailable for many species to which FGM

analyses have been applied. For many other species

for which FGM analyses may be ideal, there is little

information regarding basal seasonal levels of FGM.

Based on the available data (see Romero, 2002 for re-
view), we should expect such normal seasonal differences

in FGMs. However, without knowledge of normal sea-

sonal FGM levels, it becomes difficult to assess whether

or not observed differences in FGMs are �normal� or due
to a treatment effect (e.g., human disturbance). That is,

simply because one notes elevated FGMs during a par-

ticular season does not imply that elevation is due to

some external stressor; rather it could be a normal phys-
iological event (Millspaugh et al., 2001). Good experi-

mental design, including use of controls, replication,

and randomization of treatments helps in this regard,

but a better understanding of seasonal rhythms in

FGMs is needed.

2.2.3. Effects of captivity

Often, wild animals are captured and held in captivity
to better understand FGMs (Washburn et al., 2003) or

to evaluate the effects of potential stressors on the ani-

mal (Suedkamp Wells et al., 2003). However, wild ani-

mals in captivity may exhibit FGM levels that are

higher or even lower than free-ranging conspecifics

and might respond differently to treatments. Previous re-

search suggests wild birds placed in captivity typically

have plasma corticosterone levels that are higher com-
pared to free-ranging individuals of the same species

(Marra et al., 1995; Romero and Wingfield, 1999; Wing-

field et al., 1982). Romero and Wingfield (1999) found

that captivity influences the hypothalamic–pituitary–ad-

renal (HPA) axis in white-crowned sparrows. Studies of

white-crowned sparrows and white-throated sparrows

(Zonotrichia albicollis) brought into captivity and held

in outdoor cages suggest more than 35 days is required
for these birds to acclimate to captivity (Marra et al.,

1995; Romero and Wingfield, 1999).

As the length of time a wild-caught individual spends

in captivity increases, basal corticosterone levels de-

crease as the birds acclimate to captivity (Wingfield

et al., 1982). Piersma and Ramenofsky (1998) found a

similar response of decreasing plasma corticosterone

levels over time in migratory shorebirds following place-
ment into captivity. Because FGM levels are a reflection

of circulating glucocorticoid concentrations, captivity

may also increase FGM concentrations in wild caught

animals. Washburn et al. (2003) reported that in captive

mourning doves, FGM levels were higher during the ini-

tial few months of captivity and decreased to compara-

tively lower levels by 6 months after entering into

captivity.
The collective findings of these studies suggest the

duration wild-caught individuals spend in captivity
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influences their basal FGM levels and responsiveness to

stimuli. Researchers should recognize that individual

species might respond differently to captivity and the

period of acclimation might be quite variable. Any

study using captive animals should attempt to deter-

mine time to acclimation and incorporate this informa-
tion in subsequent studies. A main benefit of using

wild-caught animals held in captivity is the ability to

experimentally test effects of various stressors. How-

ever, if captive animals have not had sufficient time

to acclimate, their response to various stimuli might

be altered by their already artificial level of FGMs.

Captive studies could play a vital role in better under-

standing FGMs of wild animals if they provide reliable
information regarding wild animal FGM patterns and

responses to treatments. However, there is a real dan-

ger in applying the results of FGM studies from

animals held in captivity when those animals� adreno-
cortical status, response, and glucocorticoid secretion

patterns do not mimic wild animals.

2.2.4. Effects of diet

Fecal glucocorticoid metabolite measures might be

influenced by animal diets. For wild animals, availability

and nutritional value of food resources changes season-

ally. Consequently, corresponding differences in intake

of various dietary components can be expected. Such

changes in diet could affect FGM measurements. For

example, studies of humans suggest dietary fiber can de-

crease gut transit time while increasing fecal bulk, which
increases total fecal estrogen concentrations in women

(Goldin et al., 1981, 1982). Dietary fiber or other nutri-

tional parameters might also influence FGM concentra-

tions by influencing gut microbial metabolism of

glucocorticoid metabolites (Wasser et al., 1993). For

carnivores, and other wildlife that consume other ani-

mals, their FGM levels could be altered by direct intake

of glucocorticoids. For example, von der Ohe and
Servheen (2002) speculated that circulating glucocorti-

coid levels in animals may be increased by the consump-

tion of large amounts of glucocorticoids in animal flesh

(e.g., fish) or other dietary sources.

Some reported seasonal patterns of FGMs (Huber

et al., 2003; Millspaugh et al., 2001) might be partly

related to seasonal differences in diet. For herbivores,

fiber content as affected by the seasonality of plant phe-
nology, might be particularly important in influencing

seasonal patterns observed in FGMs. Despite the impor-

tance of this factor and ease with which it could be eval-

uated, it has not been addressed. Use of captive animals

to test this assumption would be useful as would labora-

tory experiments to evaluate whether diet composition

and quality affects FGM measures. We encourage

researchers to evaluate this factor and if found to be
important, it will become necessary to understand the

animal�s diet in relation to resulting FGM measures.
2.2.5. Excretion route

Metabolites from circulating steroid hormones are

typically excreted via the urinary tract, the gastrointesti-

nal tract, or both. Different steroid hormones are metab-

olized and excreted in various proportions via the urine

and/or feces. For example, Bahr et al. (2000) reported
that in marmosets, macaques, and chimpanzees, 82–

91% of cortisol metabolites are excreted via the urine,

whereas 9–18% are excreted in feces. Similarly, Tes-

key-Gerstl et al. (2000) reported for European hares,

the average excretion rate of radiolabeled glucocorticoid

metabolites in urine and feces were 91.5 and 8.5%,

respectively. Consequently, a particular FGM assay

only measures some proportion of the total glucocorti-
coid metabolites produced by an animal. However, the

assay is useful if the same relative proportion of gluco-

corticoid metabolites is always measured.

Collection of urine or feces in mammals is relatively

straightforward; however, fecal samples collected from

avian species are often contaminated by the uric acid

portion of the excreta (Ludders et al., 2001; Washburn

et al., 2003). Consequently, researchers must decide
whether or not to separate the two portions prior to

analysis. If the proportion of uric acid contaminating

the feces varies among individual fecal samples, the

amount of glucocorticoid metabolites could vary as well,

thus increasing sample-to-sample variability (Ludders

et al., 2001; Washburn et al., 2003). We believe this is

an important area for future research; however, until

such questions are answered we recommend researchers
not separate the uric acid and fecal portions of bird

droppings. In addition, by analyzing the fecal and uric

acid portions together, a more comprehensive estimate

of total glucocorticoid metabolites can be obtained.
3. Conclusions

Central to advancing FGM techniques is further eval-

uation of confounding factors, including sampling arti-

facts and biological factors. The existing literature

demonstrates that sampling issues such as sample age,

storage, and collection techniques, affect FGM mea-

sures. Biological factors including daily and seasonal

patterns in glucocorticoid secretion, sex, age, and repro-

ductive status of individual animals, and length of time
in captivity must also be considered when designing

experiments and interpreting results. Other factors such

as diet composition and fecal sample mass should be

further evaluated. Furthermore, it becomes important

to consider the interactive effects of these factors. When

considering the multiple sources of variation that exist in

FGM studies, the propagation of these errors could re-

sult in so much error, that FGM estimates are essentially
useless. Although we have offered general guidance

on how to address some of these issues given existing
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literature, these general recommendations should be

considered in light of study objectives and conditions.

Given that all procedures introduce variation in mea-

surement, researchers should carefully consider whether

the variation introduced by field and laboratory proce-

dures exceed the measurable variance introduced by
the disturbance effects of interest.

A large unresolved issue impeding the utility of FGM

assays in conservation biology and other fields is an

understanding of what range of FGM concentration,

over what period of time, is deleterious to the animal.

We must remember that glucocorticoids maintain desir-

able properties (e.g., Holberton, 1999); they are adaptive

mediators of the stress response by helping the animal
redirect activities. They also play a critical role in glu-

cose homeostasis and suppress stimulation of other

body responses (e.g., immunological) that prevents dam-

age to the body (Munck et al., 1984; Romero, 2004;

Sapolsky et al., 2000). Thus, an increase in glucocorti-

coid secretion does not automatically equate to a state

of distress (Moberg, 2000; Romero, 2004). Fecal gluco-

corticoid metabolite assays might help forewarn of
important biological costs, such as reduced demo-

graphic vigor. However, we must first understand the

relationship between the magnitude and duration of glu-

cocorticoid secretion and performance. It must be recog-

nized that elevated FGM concentrations do not

automatically indicate distress. Elevated levels might

forewarn of possible harm (Creel et al., 2002); however,

we must be careful to avoid confusing elevated with del-
eterious responses. Instead, we must carefully consider

whether observed FGM levels result in a significant bio-

logical cost that shifts energy away from normal pro-

cesses (Moberg, 2000). The crisis nature of many

decisions in conservation biology often requires deci-

sions from limited data; however, confirmatory results

should not be posited when data are incomplete or con-

founding factors are not understood. Building reliable
databases, and research with surrogate species when

possible, will aid future efforts and enhance the utility

of FGM assays.
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